Closing Thurs: HW 9.4 Closing Tues: HW 9.5 HW Help: MSC 12:30-4:30 Mon-Thu

Recall: Power, Sum, Coeff. Rules

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} . \\
& \frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x) . \\
& \frac{d}{d x}(c f(x))=c f^{\prime}(x) .
\end{aligned}
$$

Entry Task: Differentiate

$$
\text { A) } y=5 x^{3}-\frac{x^{10}}{2}
$$

B) $y=x \sqrt{x}-6+\frac{3}{\sqrt{x}}$
C) $y=5(2 x)^{3}$
D) $y=2\left(\frac{x^{2}}{3}\right)\left(\frac{9}{x^{4}}\right) x^{3}$

Steps: 1. Expand.
2. Rewrite Powers.
3. Use power rule.

9.5: Marginal Analysis and the Product/Quotient Rules

Example: Your company produces and sells hats. Based on data from recent months, you estimate:
Total Revenue:
$T R(q)=-3.75 q^{2}+28.5 q$
Total Cost:
$T C(q)=2 q^{3}-0.4 q^{2}+3 q+15$

These functions give revenue and cost in a month where you produce q hundred hats
$T R(q), T C(q)$ are in hundred dollars

Quick Review Question:
What is $\operatorname{TR}(0)$? What is $\operatorname{TC}(0)$?
What do these represent?

Numerical Review:
When $\mathrm{q}=1$ hundred hats (100 hats):

$$
\begin{array}{rlr}
T R(1) & =-3.75(1)^{2}+28.5(1) \\
& =24.75 \quad \text { hundred dollars } \\
T C(1) & =2(1)^{3}-0.4(1)^{2}+3(1)+15 \\
& =19.6 \quad \text { hundred dollars }
\end{array}
$$

$$
\begin{aligned}
\text { Profit }=P & (1)=T R(1)-T C(1) \\
& =24.75-19.6 \\
& =5.15 \text { hundred dollars }
\end{aligned}
$$

Thus, if you produce and sell exactly 100 hats this month, then your profit will be $\$ 515$.

New Definition

In Math 112, we are going to redefine Marginal Revenue and Marginal Cost
$\mathrm{Q}:$ What is $\mathrm{MR}(2)$? What is $M C(2)$?
What are the units? as follows:

$$
\begin{aligned}
& M R(q)=T R^{\prime}(q) \\
& M C(q)=T C^{\prime}(q)
\end{aligned}
$$

Q: Using this new definition and our derivative rules, find $M R(q)$ and $M C(q)$.

Comparing the Math 111 and 112

Math 112:
$M R(2)=T R^{\prime}(2)=13.50$ dollars/hat
$M C(2)=T C^{\prime}(2)=25.40$ dollars/hat
$\mathrm{MR}(2)=T R^{\prime}(2)=13.50$ dollars/hat
$\mathrm{MC}(2)=T C^{\prime}(2)=25.40$ dollars/hat
definitions of MR and MC

```
Math 111:
```

Math 111:
MR(2) = change in revenue you go
MR(2) = change in revenue you go
from selling 200 to 201 hats
from selling 200 to 201 hats
= TR(2.01) - TR(2)
= TR(2.01) - TR(2)
=0.134625 hundred dollars
=0.134625 hundred dollars
(13.46 dollars)
(13.46 dollars)
MC(2) = change in cost you go
from making 200 to 201 hats
=TC(2.01) - TC(2)
=0.255162 hundred dollars
(25.52 dollars)
$\mathrm{MC}(2)=$ change in cost you go from making 200 to 201 hats
$=T C(2.01)-T C(2)$
$=0.255162$ hundred dollars (25.52 dollars)

```

\section*{NOTES:}
1.The Math 111 and Math 112 definitions for MR and MC differ by 5 and 12 cents, respectively. (they are close to the same).
2.The derivative definition is much easier to compute and use.
3. We use the Math 111 definition to interpret and analyze our results.

Marginal Revenue:
\[
M R(q)=-7.5 q+28.5
\]

Marginal Cost:
\[
M C(q)=6 q^{2}-0.8 q+3
\]


\section*{Marginal Analysis}

Recall a big observation from Math 111:

If \(M R(q)>M C(q)\), then profit is increasing at \(q\).
(Revenue has a higher slope than cost)
If \(M R(q)<M C(q)\), then profit is decreasing at \(q\).
(Revenue has a lower slope than cost)
Thus, profit is maximized at the quantity when it switches from \(M R(q)>M C(q)\) to \(M R(q)<M C(q)\)

In other words, profit is maximized where \(\operatorname{MR}(\boldsymbol{q})=\operatorname{MC}(\boldsymbol{q})\).
(match slopes)

In our example:
\[
\begin{aligned}
& T R(q)=-3.75 q^{2}+28.5 q \\
& T C(q)=2 q^{3}-0.4 q^{2}+3 q+15
\end{aligned}
\]

To maximize profit:
Step 1: Find \(M R(q)\) and \(M C(q)\) :
\(M R(q)=T R^{\prime}(q)=-7.5 q+28.5\)
\(M C(q)=T C^{\prime}(q)=6 q^{2}-0.8 q+3\)
Step 2: Solve \(M R(q)=M C(q)\)

Three more derivative rules.
\[
\text { PRODUCT RULE: } \frac{d}{d x}(f(x) g(x))=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)
\]

\section*{QUOTIENT RULE:}
\[
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
\]

You try: Differentiate
1. \(y=x^{2}\left(x^{3}+1\right)\)
3. \(y=\left(x^{2}+3 x\right)\left(\sqrt{x}-5 x^{3}\right)\)
2. \(y=\frac{5}{x^{3}}\)
4. \(y=\frac{x^{5}}{3 x^{3}-x^{5}}\)

\section*{CHAIN RULE:}
\[
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) f^{\prime}(x)
\]```

